New Zr_{5-x}Li_{x+y}Al₃ and Zr₅Zn_xAl_{3-x} Ternary Compounds Derived from Mn₅Si₃ Structure Type

by G.M. Zatorska^{1*}, V.M. Davydov², V.V. Pavlyuk^{1,2}, W. Prochwicz² and B. Marciniak²

¹Inorganic Chemistry Department, Ivan Franko L'viv National University, Kyryl and Mefodiy st. 6, 79005 L'viv, Ukraine. e-mail: pavlyuk@franko.lviv.ua ²Institute of Chemistry, Pedagogical University of Częstochowa, 42200, Częstochowa, Poland

(Received April 6th, 2001; revised manuscript May 29th, 2001)

Alloys of the Zr–Li–Al and Zr–Zn–Al systems were prepared by arc-melting of pure metals (lithium with a purity 99.0 wt.%, zinc with a purity 99.9 wt.%, zirconium with a purity 99.98 wt.%, aluminium with a purity 99.99 wt.%) in argon atmosphere. The alloys Zr–Li–Al of ternary system were annealed at 470 K for 400 hours in tantalum containers in evacuated quartz ampoules and quenched in a cold water. Powder patterns were obtained by powder diffractometer DRON-2.0 (FeK_{α}-radiation, 20 \leq 0 \leq 100°, 2 °/min speed of scanning). For more detailed structural investigation X-ray powder diffractometer HZG-4a with CuK_{α}-radiation was used. The lattice parameters and crystal structures refinement were calculated by LATCON and CSD-Universal program package for single crystal or powder structure data treatment [1].

We found at 470 K $Zr_{5-x}Li_{x+y}Al_3$ (x = 0.2÷1.0; y = 0÷1) and $Zr_5Zn_xAl_{3-x}$ (x = 0.4÷0.6) intermetallic compounds with wide homogeneity ranges. These ternary aluminides were studied by powder methods. The detailed investigation of the crystal structure $Zr_{5-x}Li_{x+y}Al_3$ has been carried out on an alloy of $Zr_{4.8}Li_{1.2}Al_3$ composition. The final crystallographic parameters are presented in Table 1. The structure was solved in space group $P6_3/mcm$ using the CSD program. The experimental X-ray diffraction pattern and the calculated and difference diffraction profiles are shown in Fig. 1, being in a very good agreement with the model based on the Ti₅Ga₄ structure type [2,3]. Atomic position parameters and interatomic distances are listed in Table 2 and 3.

The process of formation of ternary intermetallide is realized by a partial substitution of zirconium atoms in the 4(d) position by lithium atoms and insertion of lithium atoms in empty 2(b):000 position. Unit cell parameters in homogeneity range of $Zr_{5-x}Li_{x+y}Al_3$ compound change: $a = 8.1336(1) \div 8.1757(2)$ Å, $c = 5.7029(1) \div 5.6909(2)$ Å (Fig. 2,a).

^{*} To whom correspondence should be addressed.

Figure 1. Experimental X-ray diffraction pattern, calculated and difference diffraction profiles for $Zr_{5-x}Li_{x+y}Al_3$ compound.

Space group	P6 ₃ /mcm	
<i>a</i> , (Å)	8.1757(2)	
<i>c</i> , (Å)	5.6909(2)	
Cell volume, (Å ³)	329.488(3)	
<i>F</i> (000)	475.0	
Number of atoms in cell	18.0	
Calculated density, (g/cm ³)	5.3782	
Absorption coefficient, (1/cm)	680.81	
Radiation and wavelength	Cu 1.54178	
Diffractometer	Powder	
Mode of refinement	Full profile	
Number of atom sites	4	
Number of free parameters	14	
2θ , sin(T/l) (max)	138.49 0.607	
R(intensity), R(profile)	0.0749 0.1168	
Scale factor	1.047(6)	

Table 1. Crystal data and structure refinement for $Zr_{5-x}Li_{x+y}Al_3$.

Atom	Site	x/a	y/b	z/c	B _{is}	G, %
Zr1	6g	0.2336 (2)	0	1/4	1.26 (6)	100
Zr2	4d	1/3	2/3	0	1.86 (7)	Zr-92, Li-8
Li	2b	0	0	0	2.9 (8)	Li-96, Zr-4
Al	6g	0.5987 (8)	0	1/4	2.3 (2)	100

Table 2. Atomic parameters of the $Zr_{5-x}Li_{x+y}Al_3$ compound.

Table 3. Interatomic distances and C.N. in the structure Zr_{5-x}Li_{x+y}Al₃.

Atoms	δ, Å	C.N.	Atoms	δ, Å	C.N.
Zr(1) – 2Li	2.3815				
-1A1	2.8534		Al - 1Zr(1)	2.8534	
- 2A1	2.9858	15	- 4Zr(2)	2.8714	0
- 2A1	3.1582	15	- 2Zr(1)	2.9858	9
- 4Zr(1)	3.3079		- 2Zr(1)	3.1584	
- 4Zr(2)	3.5121				
Zr(2) – 2Zr(2)	2.8454		L: 27.(2)	2.3815	8
- 6A1	2.8714	14	LI = 2Zr(2) = 6A1	2.8454	
- 6Zr(1)	3.5121				

The Zr_5Al_4 binary compound (Ti₅Ga₄ structure type) [4] has not been found in Zr-Li–Al system at 470 K. It is stable between 1263 K to 1803 K. $Zr_{5-x}Li_{x+y}Al_3$ ternary compound, apparently, is remainder of high temperature substitution limited solid solution on the base Zr_5Al_4 binary compound or substitution and insertion limited solid solution on the base Zr_5Al_3 (Mn₅Si₃ structure type) [5].

New ternary $Zr_5Zn_xAl_{3-x}$ (x = 0.4÷0.6) alluminide with wide homogeneity range is formed when lithium atoms are replaced by zinc atoms in the $Zr_{5-x}Li_{x+y}Al_3$ structure. But the formation of this compound is carried out by a partial substitution of Al atoms by Zn atoms. The structure was solved in space group $P6_3/mcm$ too, but Mn_5Si_3 structure type. Change of the lattice parameters of $Zr_5Zn_xAl_{3-x}$ along of isoconcentrate 62.5 at.% of Zr is $a = 8.094(3) \div 8.081(2)$ Å, $c = 5.694(1) \div 5.684(1)$ Å (Fig. 2,b).

Figure 2. Change of lattice parameters for the $Zr_{5-x}Li_{x+y}Al_3$ (a) and $Zr_5Zn_xAl_{3-x}$ (b).

REFERENCES

- Akselrud L.G., GrynYu.M., Zavalii P.Yu., CSD-Universal program package for single crystal or powder structure data treatment, Coll. Abstracts 12th European Crystallographic Meeting, Moscow, 20–29 August 1989, Vol. 3, p. 155.
- Villars P. and Calvert L.D., Pearson's Handbook of Crystallography Data for Intermetallic Phases, Amer. Soc. Met., 1983 Vol. 1–3, p. 3258.
- 3. Gryn Yu.M. and Gladyshevsky R.Ye., Gallids -M: Metal, 1989, p. 240-241.
- 4. Pötzschke M. and Shubert K., Z. Metallk., 53, 548 (1962).
- 5. Edshammar L.-E. and Andersson S., Acta Chem. Scand., 14, 223 (1960).